ST-AFN: a spatial-temporal attention based fusion network for lane-level traffic flow prediction

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Spatial-Temporal Dynamics for Traffic Prediction

Spatial-temporal prediction has many applications such as climate forecasting and urban planning. In particular, traffic prediction has drawn increasing attention in data mining research field for the growing traffic related datasets and for its impacts in real-world applications. For example, an accurate taxi demand prediction can assist taxi companies to pre-allocate taxis to meet with commut...

متن کامل

Nonlinear spatial-temporal prediction based on optimal fusion

The problem of spatial-temporal signal processing and modeling has been of great interest in recent years. A new spatial-temporal prediction method is presented in this paper. An optimal fusion scheme based on fourth-order statistic is first employed to combine the received signals at different spatial domains. The fused signal is then used to construct a spatial-temporal predictor by a support...

متن کامل

A network flow model for lane-based evacuation routing

Most traffic delays in regional evacuations occur at intersections. Lane-based routing is one strategy for reducing these delays. This paper presents a network flow model for identifying optimal lane-based evacuation routing plans in a complex road network. The model is an integer extension of the minimumcost flow problem. It can be used to generate routing plans that trade total vehicle travel...

متن کامل

A neuro-fuzzy approach to vehicular traffic flow prediction for a metropolis in a developing country

Short-term prediction of traffic flow is central to alleviating congestion and controlling the negative impacts of environmental pollution resulting from vehicle emissions on both inter- and intra-urban highways. The strong need to monitor and control congestion time and costs for metropolis in developing countries has therefore motivated the current study. This paper establishes the applicatio...

متن کامل

DeepTrend: A Deep Hierarchical Neural Network for Traffic Flow Prediction

In this paper, we consider the temporal pattern in traffic flow time series, and implement a deep learning model for traffic flow prediction. Detrending based methods decompose original flow series into trend and residual series, in which trend describes the fixed temporal pattern in traffic flow and residual series is used for prediction. Inspired by the detrending method, we propose DeepTrend...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PeerJ Computer Science

سال: 2021

ISSN: 2376-5992

DOI: 10.7717/peerj-cs.470